

LBNE Beam and Detector Performance

Brookhaven
National
Laboratory

LBNE Beam and Detector Performance DOE Site Visit Breakout Session Discussion

Mary Bishai Brookhaven National Laboratory

September 8, 2009

CP Violation, Mass Hierarchy and $u_{\mu} ightarrow u_{\mathrm{e}}$

LBNE Beam and Detector Performance

Brookhave National Laboratory Appearance probabilities of $\nu_{\mu} \rightarrow \nu_{e}$ for different values of the CP phase. A CP phase $\neq 0$, π implies CP is violated in the lepton sector.

CP Violation, Mass Hierarchy and $u_{\mu} ightarrow u_{\mathrm{e}}$

LBNE Beam and Detector Performance

Brookhave National Laboratory Appearance probabilities of $\nu_{\mu} \rightarrow \nu_{e}$ for different values of the CP phase. A CP phase $\neq 0$, π implies CP is violated in the lepton sector.

LBNE Beam Simulations

LBNE Beam and Detector Performance

Brookhaver National Laboratory

Two INDEPENDANT efforts on focusing system designs for CD1

Both use embedded targets and focusing horns.

Un-optimized focusing/targeting based on horns only. Which is better for physics? What about solenoids (local BNL expertise on neutrino factories/muon colliders)?

Target and Horn Radiation Damage Tests data from Nick Simos, BNL

LBNE Beam and Detector Performance

Mary Bisha Brookhave National Laboratory LBNE targets and horns have to withstand 2 MW beams for a decade! 200 MeV Proton fluence at BLIP (Brookhaven Linac Isotope Producer) $\sim 10^{21} \ \mathrm{p/cm^2}$ ($\sim 2 \ \mathrm{yrs}$ with 300kW NuMI beam):

IG43 Graphite

NuMI Horn Materials

This work was carried out independant of the LBNE effort at BNL. M. Bishai is requesting extra support for BNL efforts on target irradiation and material R&D for LBNE.

LBNE Beam Design Considerations

LBNE Beam and Detector Performance

Brookhave National Laborator Using a NuMI-based LBNE design with a 120 GeV on-axis proton beam:

Selection of horn materials and target design has significant impact on the flux. Physics sensitivity has to be preserved in a realistic design Starting with high energy proton beams (120 GeV) - its difficult to cover the region of the 2nd oscillation maxima and solar oscillation.

LBNE/DUSEL Detector Performance

LBNE Beam and Detector Performance

Mary Bish Brookhave National Laborator A preliminary on-axis wide-band beam for LBNE based on the NuMI focusing system has been developed. Current LBNE water Cerenkov response is based on SuperK MC using single e-like ring PID:

Improvements to detector response possible!

LBNE Beam and Detector Performance

Brookhave National Laboratory MiniBoone has measured the ν_{μ} + N \rightarrow N' + μ + single π cross-sections in a large Cherenkov detector arXiv:0904.3159v1:

Optimized reconstruction of multi-ring events will improve LBNE detector response to multi-GeV beam and improve physics sensitivity.

Optimization of LBNE sensitivities

LBNE Beam and Detector Performance

Mary Bisha Brookhave National Laboratory Detector and beam simulation and reconstruction efforts are needed to optimize LBNE <u>before</u> beam and detector designs can be finalized. Photo-detector performance and designs of MW target/focusing systems impact ultimate beam and detector capabilities.

- Improve low energy $\nu_{\rm e}$ signal to background (π^0) discrimination.
- Improve multi-GeV ν reconstruction efficiency for both ν_μ disappearance, $\nu_{\rm e}$ and ν_{τ} appearance.
- Increase beam coverage at low energies (large CP) using a variety of techniques: focusing system optimization, running with lower beam energies, running off-axis.
- Explore beam and detector options for new physics sensitivities:
 e.g. higher energy neutrinos could probe anomalous interactions.
- Targeting R&D is critical using BNL facilities and expertise. We need a target/horn system that can withstand > 10²² p.o.t!

Requesting support for 2 postdocs+student (?) and materials to optimize beam AND detector simultaneously. Work involves simulations and R&D efforts on beam targeting and photodetector technology. Builds on existing expertise in beam and detector simulations and R&D facilities.